

CI 2 – Cinématique : Modélisation, prévision et vérification du comportement cinématiques des systèmes

Modélisation des systèmes mécaniques

Effeuillage d'un Renault Clio [1]

Moteur 1.5 dCi K9K 105 ch [1]

Modélisation par schéma cinématique[2]

Les systèmes peuvent être constitués de 1 à plusieurs milliers de pièces, appelés encore solides. Ces solides sont liés les uns aux autres pour transmettre des efforts ou des mouvements. La cinématique permet d'étudier les mouvements relatifs entre les solides.

Nous nous intéresserons principalement à des systèmes existants. La géométrie des solides ne permettant pas toujours une étude aisée, nous commencerons par introduire des outils permettant de modéliser ces systèmes.

Problématique

PROBLÉMATIQUE:

- Quels sont les mouvements relatifs existants entre les solides qui constituent un mécanisme?
- Quels sont les outils graphiques pour modéliser ces mécanismes ?

SAVOIRS:

- Identifier la nature des contacts entre les solides.
- Proposer une liaison cinématique associé au contact entre solides.
- Réaliser un graphe de structure.
- Réaliser un schéma cinématique (schéma cinématique minimal et schéma d'architecture).

Le but de ce cours est de présenter des méthodes pour modéliser un système mécanique par un schéma cinématique. Suivant les points de vues, d'autres méthodes peuvent être envisagées.

La complexité des contacts entre les solides est telle que les modèles choisis pour modéliser les liaisons peuvent faire l'objet de discussion. J'insiste donc sur le fait que les outils proposés ne sont que des modèles associés à des objets réels.

Ce document est en évolution permanente. Merci de signaler toutes erreurs ou coquilles.

1	Sché	ema technologique	2
		Classes d'équivalence cinématique	
	1.2	Schéma technologique	5
		Représentation d'éléments standards	
	1.4	Exemple	7
2	Mod	lélisation des contacts entre solide	8
	2.1	Le graphe de structure	8
	2.2	Identification des liaisons entre solides ou entre CEC	9
	2.3	Notion de degrés de liberté et de degrés de liaison	10
	2.4	Modélisation des liaisons cinématiques	13
		Récapitulatif	
	2.6	Exemple	25
3	Sché	éma cinématique	26
	3.1	Schéma d'architecture	26
	3.2	Schéma cinématique minimal	26

1 Schéma technologique

Une première étape pour modéliser un mécanisme peut être de passer par un schéma dit technologique. Ce type de schéma n'est pas normalisé. Il permet de représenter un système ainsi que certaines solutions technologiques qui sont utilisées.

Lors de **l'analyse d'un mécanisme** ce schéma permet de disséquer un plan ou un système pour comprendre son fonctionnement.

En phase de **conception d'un mécanisme** ce schéma est utilisé pour proposer des choix de solutions techniques.

1.1 Classes d'équivalence cinématique

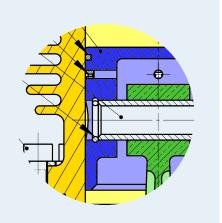
Définition

Une classe d'équivalence cinématique est un ensemble de pièces en liaison encastrement (démontable ou non). Toutes les pièces faisant partie d'une même classe d'équivalence n'ont pas de mobilités relatives entre elles. Elles ont le même mouvement lors du fonctionnement du mécanisme.

Lorsqu'on veut établir un schéma cinématique, la première étape est de définir les différentes classes d'équivalence.

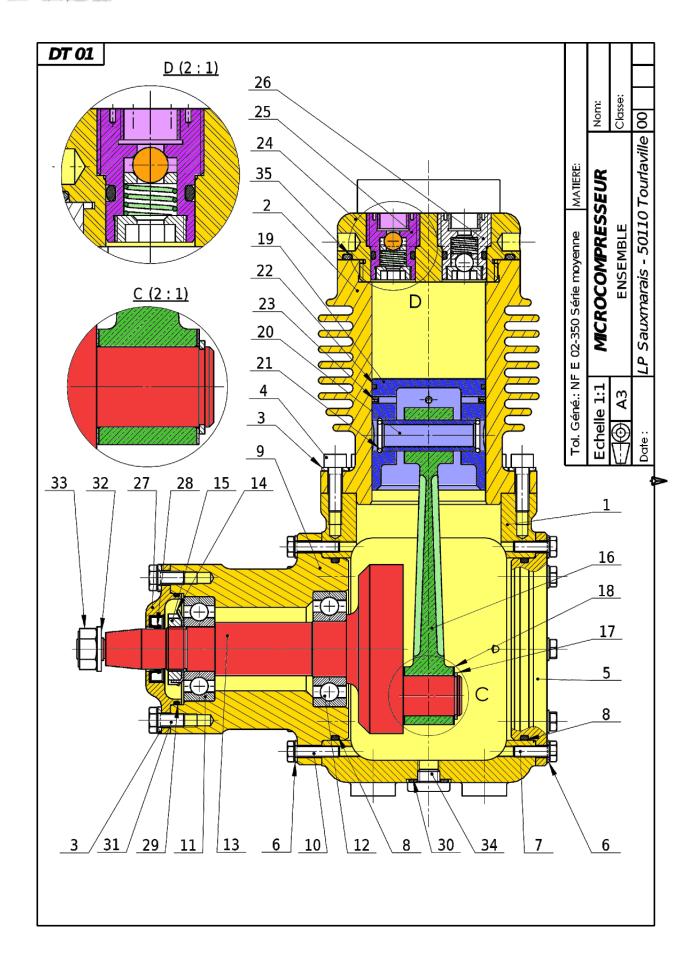
Méthode

On commence usuellement par repérer le bâti que l'on colorie, de préférence, avec une couleur claire. On identifie alors l'ensemble de pièces reliées au bâti par l'intermédiaire de vis ou d'autres éléments filetés.


On cherche alors à identifier une pièce qui semble importante lors de l'utilisation d'un mécanisme (un arbre par exemple). De même que précédemment, on recherche l'ensemble des pièces liées à cette dernière.

On répertorie ensuite (par exemple dans un tableau) les pièces appartenant aux différentes classes d'équivalence.

Les pièces qui sont en liaison encastrement démontables ne sont pas toujours assemblées par des vis. En effet, des pièces peuvent être serrées entre elles par l'intermédiaire d'un ajustement. Nous verrons plus tard comment indiquer sur un dessin quel est la nature de l'ajustement entre 2 pièces. Elles peuvent aussi être soudées.


Ici rien n'indique que l'axe est encastré dans le piston ou dans la bielle.

On peut aussi s'aider de la nomenclature et du nom des pièces, dans les cas litigieux, pour classer les pièces dans des CEC.

Dans le cas du micro compresseur, colorier chacune des classes d'équivalence avec une couleur différente.

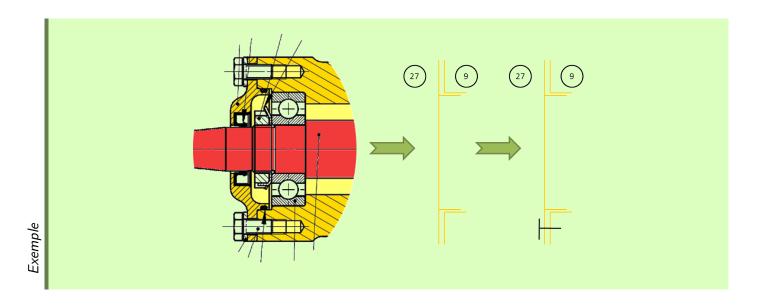
Identifier les classes d'équivalence cinématique.

Classe d'équivalence	Pièces
A	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 27, 28, 29, 30, 31, 34, 35 (25, 26)
В	19, 20, 21, 22, 23
С	16
D	13, 14, 15, 17, 18, 32, 33

xempl

1.2 Schéma technologique

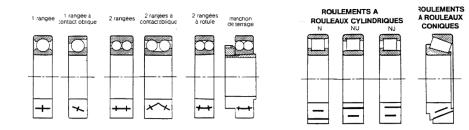
Définition

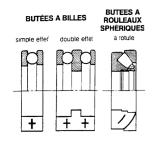

Le schéma technologique n'est pas un schéma normalisé. Les différentes pièces sont représentées sous forme filaire. Les contacts entre les pièces sont représentés. Les composants technologiques sont représentés sous forme schématique.

Représentation entre la boîte à roulements 9 et la boîte à joint 27.

Exemple

Le schéma technologique met en avant les zones de contacts entre ces 2 pièces : on y fait apparaître clairement la zone de contact plane ainsi que la "petite" zone cylindrique. Ce contact cylindre cylindre est appelé **centrage court** (Le rapport entre la longueur de contact et le diamètre du cylindre est inférieur à 1.).

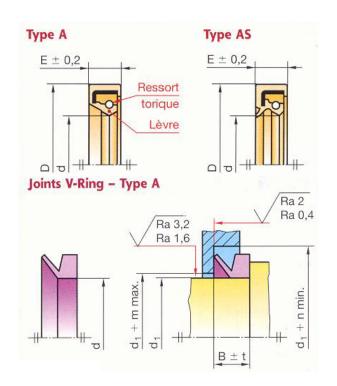

Remarque

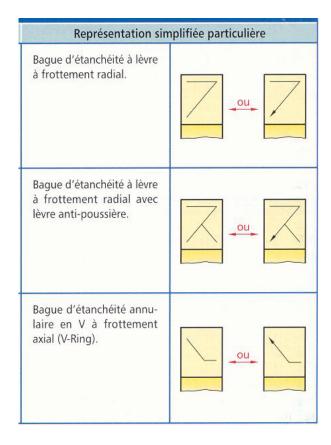

Il est possible, si cela n'a pas d'intérêt pour la modélisation, de ne pas représenter les contacts au sein d'une même classe d'équivalence.

1.3 Représentation d'éléments standards

Pour dessiner les éléments standards de la construction mécanique comme les roulements ou les joints, il existe une représentation spécifique.

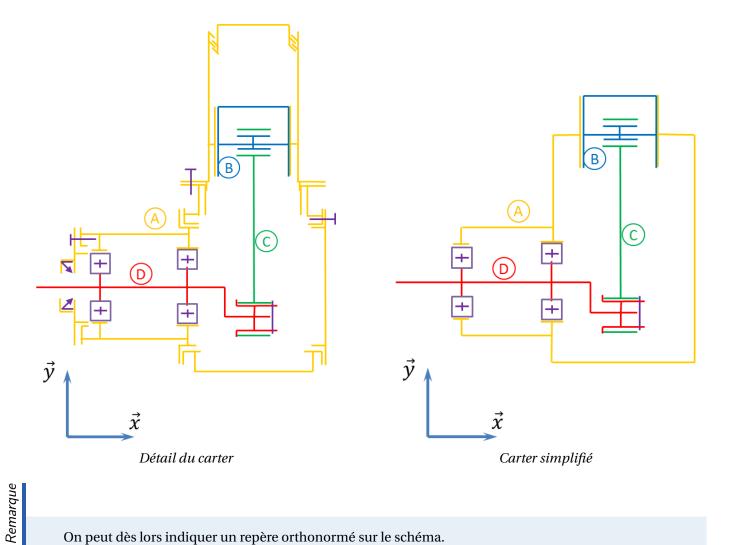
Les roulements permettent d'assurer un guidage en rotation entre deux éléments.





ROULEMENTS A ROULEAUX SPHÉRIQUES

Les joints présentés ci-dessous [4] assurent une étanchéité dynamique entre deux pièces en mouvement relatif.



1.4 Exemple

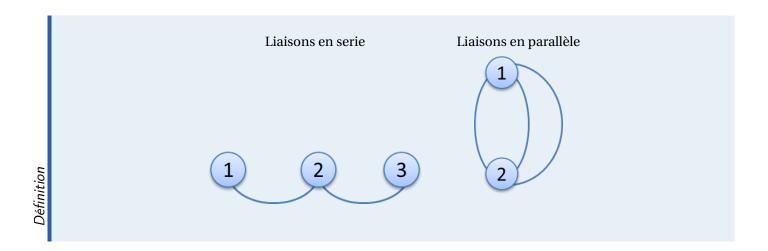
Exemple

Réaliser le schéma technologique associé au compresseur.

On peut dès lors indiquer un repère orthonormé sur le schéma.

Modélisation des contacts entre solide

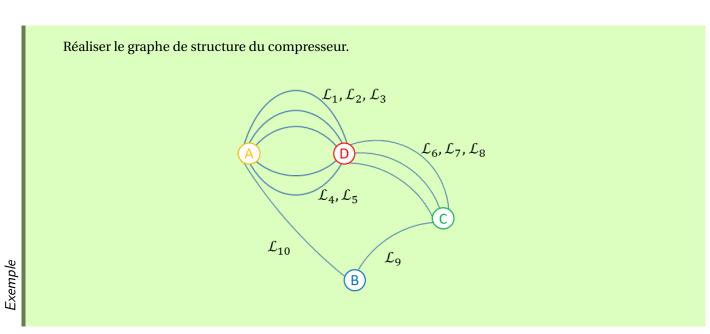
2.1 Le graphe de structure


Le graphe de structure permet d'avoir une vue d'ensemble sur un mécanisme. Dans ce graphe :

- les classes d'équivalence sont représentées par des cercles;
- les liaisons (ou contacts) entre les classes sont représentées par des arc.

On définit 3 types de chaînes :

Les chaînes ouvertes Les chaînes fermées Les chaînes complexes 6 6 5



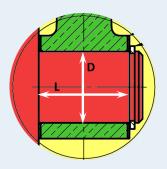
Tous les contacts permanents sont à représenter dans ce graphe.

Les contacts qui peuvent se désolidariser pendant le fonctionnement ou à cause des jeux ne sont pas à prendre en compte.

Dès lors, les pièces déformables (les ressorts par exemple) ne seront plus représentés.

2.2 Identification des liaisons entre solides ou entre CEC

2.2.1 Surfaces de contact


Les surfaces de contact désignent les entités géométriques qui sont en contact entre deux solides ou deux classes d'équivalence. Elles correspondent à chaque liaison citée dans le graphe de structure.

Définition

Elles sont toujours associées par paire. Une surface élémentaire peut être de type sphérique, cylindrique, plane...

Dimension de la zone de contact : on veillera à bien visualiser les dimensions de la zone de contact.

Par exemple, dans le cas des cylindres, on veillera à déterminer le rapport entre la longueur de guidage et le diamètre.

Remarque

Donner la nature des surfaces pour chacune des liaisons du compresseur.

```
- \mathcal{L}_1: contact cylindre - cylindre;
```

- \mathcal{L}_2 : contact cylindre - cylindre;

- \mathcal{L}_3 : contact cylindre - cylindre;

- \mathcal{L}_4 : contact plan - plan;

- \mathcal{L}_5 : contact plan - plan;

- \mathcal{L}_6 : contact cylindre - cylindre;

- \mathcal{L}_7 : contact plan - plan;

- \mathcal{L}_8 : contact cylindre - cylindre;

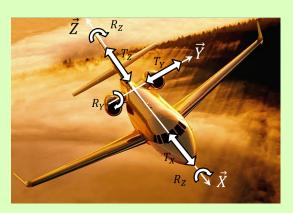
- \mathcal{L}_9 : contact plan - plan.

Exe

2.3 Notion de degrés de liberté et de degrés de liaison

Degrés de liberté

On considère un solide S_1 en mouvement par rapport à un solide S_0 . Le mouvement entre les deux solides peut, au maximum, se décomposer en 6 mouvements élémentaires appelés 6 degrés de liberté :


```
– une translation T_x suivant la direction \overrightarrow{x_0}; – une rotation R_x autour d'un axe parallèle à (0, \overrightarrow{x_0});
```

- une translation T_y suivant la direction $\overrightarrow{y_0}$; une rotation R_y autour d'un axe parallèle à $(0, \overrightarrow{y_0})$;
- une translation T_z suivant la direction $\overrightarrow{z_0}$; une rotation R_z autour d'un axe parallèle à $(0, \overrightarrow{z_0})$.

Lorsqu'un avion se déplace dans le ciel, il peut se déplacer suivant les 6 degrés de liberté. Ces 6 mouvements portent alors des noms particuliers :

- T_x est appelée l'avancement;
- T_y est appelée la dérive;
- $-T_z$ est appelée l'ascension ou la descente;
- R_x est appelée le roulis;
- $-R_y$ est appelée le tangage;
- $-R_z$ est appelée le lacet.

Falcon 2000 – Dassault Aviation [6]

Mouvements	T_x	T_y	T_z	R_{x}	R_y	Y_z
Mouvement d'une balle par rapport le sol						
Mouvement d'une balle de tennis par rapport à un tube						
Mouvement du tube par rapport à une table lorsqu'il est posé sur le coté						
Mouvement du tube par rapport à une table lorsqu'il est posé à plat						
Mouvement d'une vis par rapport à un écrou						
Mouvement d'une roue de vélo par rapport au cadre						
Mouvement						

Degrés de liaisons

On considère un solide S_1 fixe par rapport à un solide S_0 . Les efforts transmissibles entre les deux solides peuvent, au maximum, se décomposer en 6 efforts élémentaires appelés 6 degrés de liaisons :

- un effort transmissible F_x suivant la direction $\overrightarrow{x_0}$;
- un effort transmissible F_y suivant la direction $\overrightarrow{y_0}$;
- un effort transmissible F_z suivant la direction $\overrightarrow{z_0}$;

- un couple transmissible C_x autour d'un axe parallèle à $(0, \overrightarrow{x_0})$;
- un couple transmissible C_y autour d'un axe parallèle à $(0, \overrightarrow{y_0})$;
- un couple transmissible C_z autour d'un axe parallèle à $(0, \overrightarrow{z_0})$.

Un effort s'exprime en Newton (N) et un couple en Newton - mètres ($N \cdot m$).

11

Exemple

Résultat

Effort	F_{x}	F_y	F_z	C_x	C_y	C_z
Effort d'une balle sur le sol						
Effort d'une balle de tennis dans un tube						
Effort du tube sur une table lorsqu'il est posé sur le coté						
Effort du tube sur une table lorsqu'il est posé à plat						
Effort d'une vis sur un écrou						
Effort d'une roue de vélo sur le cadre						
Effort						

Lorsque deux solides sont liés, on a :

 $degr\'e \ de \ libert\'e + degr\'e \ de \ liaison = 6$

2.4 Modélisation des liaisons cinématiques

2.4.1 Hypothèse

Lors de la modélisation des liaisons cinématiques, différentes hypothèses pourront être faites :

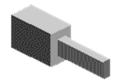
- les surfaces peuvent être considérées comme parfaites ;
- les liaisons peuvent être considérées sans jeu.

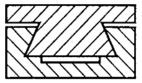
Attention, en TP, il faudra vérifié si ces hypothèses sont applicables ou non.

2.4.2 Liaison encastrement

La liaison encastrement est une liaison où il y a aucun degré de liberté.

La liaison encastrement peut être réalisée par association de plusieurs solides (voir cours sur la conception des liaisons encastrement démontables) ou par soudage (voir cours sur le soudage).

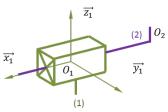


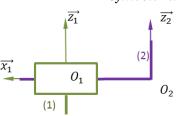

2.4.3 Liaison glissière

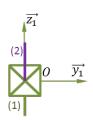
Définition et hypothèses :

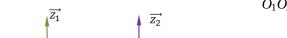
une liaison glissière d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 autorise une translation d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 .

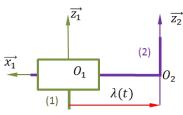
Nature des surfaces en contact :




Degrés de liberté : T_X


Degrés de liaison : F_Y , F_Z , C_X , C_Y , C_Z .





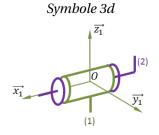
Paramétrage

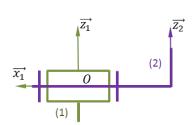
Il faut paramétrer la translation T_X : $\overrightarrow{O_1O_2}(t) = \lambda(t)\overrightarrow{x_1}$

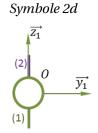
Douille à billes

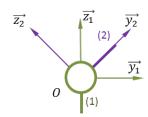
2.4.4 Liaison pivot

Définition et hypothèses : une liaison pivot d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 autorise une rotation d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 .

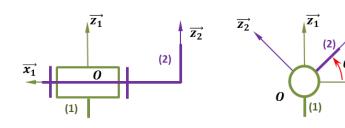

Nature des surfaces en contact :

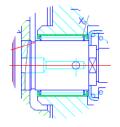

Surfaces de révolutions **sauf les cylindres**. Le rapport L/D doit être supérieur à 1,5.




Degrés de liberté : R_X

Degrés de liaison : F_X , F_Y , F_Z , C_Y , C_Z .





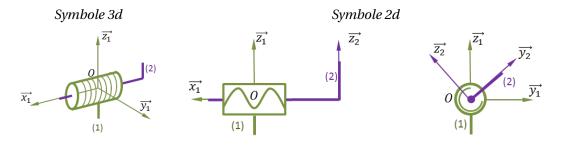
Paramétrage

Il faut paramétrer la rotation R_X :

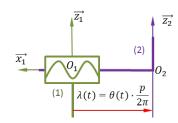
Roulement à aiguilles

2.4.5 Liaison glissière hélicoïdale

Définition et hypothèses :


une liaison glissière hélicoïdale d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 autorise une rotation et une translation d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 . Ces deux mouvements sont liés par **le pas**.

Nature des surfaces en contact


Degrés de liberté : R_X et T_X

Degrés de liaison : F_X , F_Y , F_Z , C_X , C_Y , C_Z .

Paramétrage

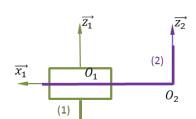
Il faut paramétrer la translation T_X et la rotation R_X .

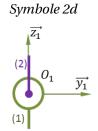
2.4.6 Liaison pivot glissant

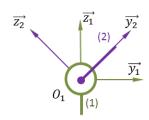
Définition et hypothèses :

une liaison pivot glissant d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 autorise une rotation et une translation d'axe $\overrightarrow{x_1}$ entre S_1 et S_2 .

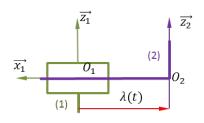

Nature des surfaces en contact :

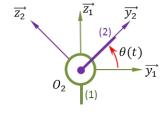

Dans la plupart des cas, les surfaces de contact sont des cylindres dont L/D > 1,5.

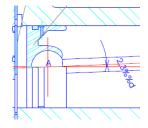



Degrés de liberté : R_X et T_X

Degrés de liaison : F_Y , F_Z , C_Y , C_Z .





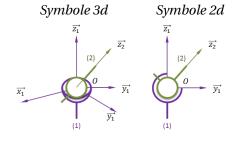


Paramétrage

Il faut paramétrer la translation T_X et la rotation R_X .

2.4.7 Liaison rotule à doigt

Définition et hypothèses :


une liaison rotule à doigt autorise deux rotations entre S_1 et S_2 .

Nature des surfaces en contact

Degrés de liberté : R_X et R_Y

Degrés de liaison : F_X , F_Y , F_Z , C_Z .

Paramétrage

Il faut paramétrer les rotations R_X et R_Y .

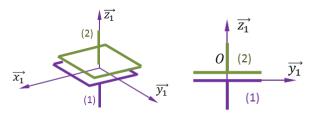
2.4.8 Liaison appui plan

Définition et hypothèses :

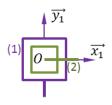
une liaison appui plan de normale $\overrightarrow{z_1}$ entre S_1 et S_2 autorise une rotation autour de $\overrightarrow{z_1}$ et deux translations suivant $\overrightarrow{x_1}$ et $\overrightarrow{y_1}$ entre S_1 et S_2 .

Nature des surfaces en contact

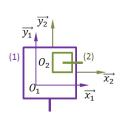
On note L et l les dimensions de la zone de contact. Dans le cas d'un appui plan, $L/l \simeq 1$. L et l sont du même ordre de grandeur que les dimensions du plus petit solide.

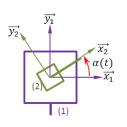


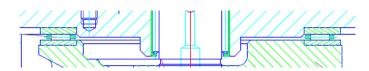
Degrés de liberté : R_X et T_X


Degrés de liaison : F_Y , F_Z , C_Y , C_Z .

Symbole 3d




Symbole 2d



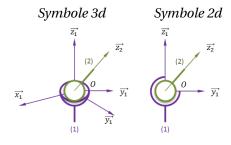
Paramétrage

Il faut paramétrer les translation T_X et T_Y et la rotation R_Z .

Butée à aiguilles

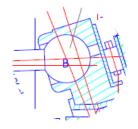
2.4.9 Liaison rotule

Définition et hypothèses :


une liaison rotule entre S_1 et S_2 autorise trois rotations.

Nature des surfaces en contact :

Les surfaces en contact peuvent être des cercles, des sphères ou des "cylindres courts". Dans ce cas,



Degrés de li
berté : R_X , R_Y et R_Z Degrés de liaison : F_X , F_Y , F_Z .

Paramétrage

Il faut paramétrer les rotations R_X , R_Y et R_Z .

Roulement à rotule sur billes

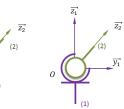
2.4.10 Liaison sphère – cylindre ou liaison linéaire annulaire

Définition et hypothèses :

une liaison rotule entre S_1 et S_2 autorise trois rotations et 1 translation.

Nature des surfaces en contact :

Les surfaces en contact peuvent être des cercles ou des "cylindres courts". Dans ce cas, L/D << 1



Degrés de liberté : R_X , R_Y et R_Z , T_X .

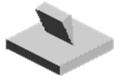
Degrés de liaison : F_Y et F_Z .

Symbole 2d

Paramétrage

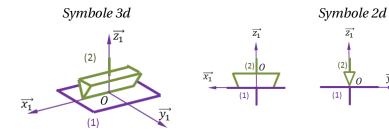
Il faut paramétrer les rotations R_X , R_Y et R_Z ainsi que la translation T_X ..

Roulement à billes

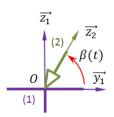

2.4.11 Liaison cylindre - plan ou liaison linéaire rectiligne

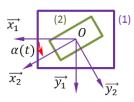
Définition et hypothèses :

une liaison cylindre – plan de normale $\overrightarrow{z_1}$ entre S_1 et S_2 autorise deux rotations et deux translations suivant $\overrightarrow{x_1}$ et $\overrightarrow{y_1}$ entre S_1 et S_2 .


Nature des surfaces en contact :

On note L et l les dimensions de la zone de contact. Le contact est linéique si L>>l et si L et du même ordre de grandeur que la plus petit des solides en contact.


Degrés de liberté : T_X et T_Y , R_X et R_Z

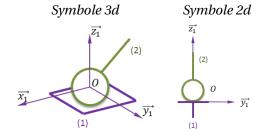

Degrés de liaison : F_Z et C_Y .

Paramétrage

Il faut paramétrer les translations et les rotations.

2.4.12 Liaison sphère - plan ou liaison ponctuelle

Définition et hypothèses :


une liaison sphère – plan de normale $\overrightarrow{z_1}$ entre S_1 et S_2 autorise trois rotations et deux translations suivant $\overrightarrow{x_1}$ et $\overrightarrow{y_1}$ entre S_1 et S_2 .

Nature des surfaces en contact :

On note L et l les dimensions de la zone de contact. Le contact est ponctuel si $L/l \simeq 1$ et si l et L sont petits devant la dimension du plus petit solide.

Degrés de liberté : T_X et T_Y , R_X , R_Y et R_Z

Degrés de liaison : F_Z .

Paramétrage

Il faut paramétrer les translations et les rotations.

2.5 Récapitulatif

Nom	Schéma 2D	Schéma 3D
Glissière	$\overline{z_1}$ O_1 O_2 $\overline{z_2}$ O_2 $\overline{z_1}$ O_2 $\overline{z_1}$ O_2 $\overline{z_2}$ $\overline{z_1}$ O_2 $\overline{z_1}$ $\overline{z_2}$ $\overline{z_1}$ $\overline{z_2}$ $\overline{z_1}$ $\overline{z_2}$ $\overline{z_1}$ $\overline{z_2}$ $\overline{z_1}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_1}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_1}$ $\overline{z_2}$ \overline	$\overline{x_1}$ $\overline{y_1}$ $\overline{y_2}$ O_2 $\overline{y_1}$
Pivot	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{x_1}$ O $\overline{y_1}$ O
Glissière hélicoïdale	$\overrightarrow{z_1}$ $\overrightarrow{z_2}$ $\overrightarrow{z_2}$ $\overrightarrow{z_2}$ $\overrightarrow{z_2}$ $\overrightarrow{z_1}$ $\overrightarrow{y_2}$ $\overrightarrow{y_1}$ $\overrightarrow{y_1}$	$\overline{x_1}$ 0 $\overline{y_1}$ 0 0 0 0 0 0 0 0 0 0
Pivot glissant	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{x_1}$ $\overline{y_1}$ $\overline{y_1}$
Rotule à doigt	$ \begin{array}{c} \overline{z_1} \\ 0 \\ \overline{y_1} \end{array} $	$\overline{z_1}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{y_1}$ $\overline{y_1}$

Nom	Schéma 2D	Schéma 3D
Appui plan	$ \begin{array}{c c} \overline{z_1} \\ O \\ \hline (2) \\ \hline (1) \\ \hline (2) \\ \hline (2) \\ \hline (3) \\ \hline (4) \\ \hline (5) \\ \hline (7) \\ \hline (7) \\ \hline (8) \\ \hline (9) \\ \hline (1) \\ \hline (1) \\ \hline (1) \\ \hline (2) \\ \hline (2) \\ \hline (3) \\ \hline (4) \\ \hline (5) \\ \hline (6) \\ (7) \\ \hline (7) \\ \hline (8) \\ (8) \\ \hline (9) \\ (9) \\ \hline (1) \\ \hline (1) \\ \hline (1) \\ \hline (1) \\ \hline (2) \\ \hline (2) \\ \hline (3) \\ (4) \\ \hline (4) \\ \hline (5) \\ (5) \\ (6) \\ (7) \\ (7) \\ (8) \\ (8) \\ (8) \\ (9) \\ (9) \\ (9) \\ (9) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1)$	$\overline{z_1}$ $\overline{z_1}$ $\overline{y_1}$
Rotule	$ \begin{array}{c} \overline{z_1} \\ \downarrow \\ 0 \\ \downarrow \\ 1 \end{array} $	$\overline{z_1}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{y_1}$ $\overline{y_1}$
Cylindre – Plan	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{z_1}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$ $\overline{z_2}$
Sphère plan	$\overline{x_1}$ \overline	$\overline{X_1}$ O
	(2) (2) (3)	$\overline{z_1}$

2.6 Exemple

Dans l'exemple du compresseur, en vous servant des surfaces de contacts, puis des mobilités permises par le mécanisme, associer des liaisons cinématiques aux liens établis précédemment.

Lorsque les contacts sont "géographiquement proches" vous associerai une seule liaison à chacune des zones de contacts. Vous indiquerez le centre de chacune des liaisons ainsi que leur axe.

Exemple

Reprendre le graphe de structure en remplaçant \mathcal{L}_i par une liaison associée à son centre et son axe.

3 Schéma cinématique

3.1 Schéma d'architecture

L'assemblage des liaisons précédemment définies permet de construire le schéma d'architecture.

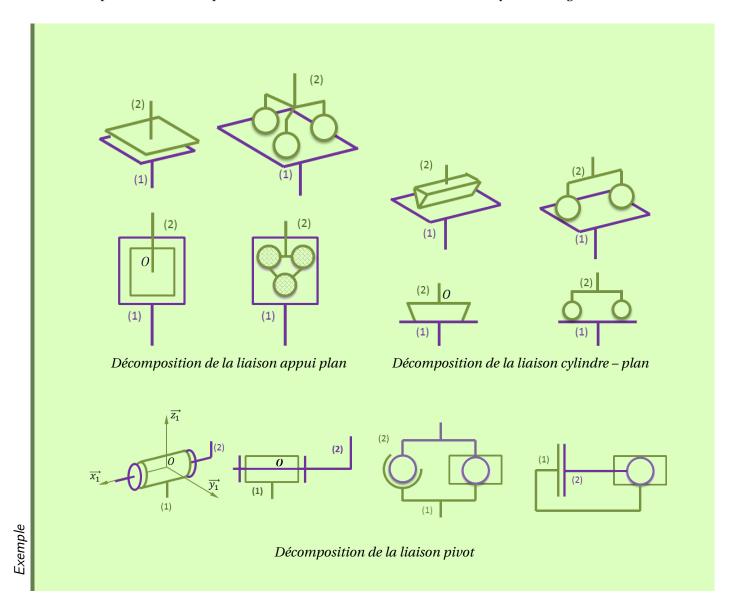
- 1. Indiquer sur le schéma le **repère** de représentation (dans le plan ou en 3D).
- 2. Placer sur le schéma, les **centres** de chaque liaison (points A, B, C, ...).
- 3. Tracer les axes principaux des liaisons :
 - axe (d'un pivot ou d'une glissière par exemple);
 - normale (d'un appui plan par exemple).
- 4. Dessiner chacun des symboles normalisés des liaisons en couleur : respecter leur direction.
- 5. Relier les groupes cinématiques par des traits (éviter les zigzags et croisements de traits) : on ne tient pas compte de la forme et de l'épaisseur des pièces qui composent le mécanisme.
- 6. Ajouter le symbole indiquant **le groupe de référence dit "le bâti"**.
- 7. Paramétrer les liaisons du mécanisme à l'aide de figures planes.

Exemple

Réaliser le schéma cinématique d'architecture associé au compresseur.

Remarque

Le schéma d'architecture est utilisé lors des études de statique.


3.2 Schéma cinématique minimal

Lorsque des liaisons sont en parallèles, il est possible de simplifier le schéma d'architecture dans le but de réaliser une étude cinématique.

Nous avons vu précédemment que la liaison sphère – plan est la seule liaison permettant de supprimer un seul degré de liberté.

Il est donc possible de décomposer chacune des liaisons définies en liaisons ayant des degrés de liberté moindres.

Remarque

- Un chapitre ultérieur permettra de déterminer de façon analytique les liaisons équivalentes à un système.
- Le schéma cinématique minimal est utilisé lors des études cinématiques.

Exemple

Réaliser le schéma cinématique minimal du compresseur en vue de de face, en vue de droite et en perspective.

Références

- [1] Renault, Au cœur de la technique, www.renault.com/fr/Innovation/au-coeur-de-la-technique/ Pages/au-coeur-de-la-technique.aspx.
- [2] Wikipedia, *Modélisation cinématique des mécanismes*, http://fr.wikipedia.org/w/index.php?title= Mod%C3%A9lisation_cin%C3%A9matique_des_m%C3%A9canismes&oldid=70679121.
- [3] CNR CMAO, Compresseur de climatiseur pour automobile, http://www.cnr-cmao.ens-cachan.fr/.
- [4] Guide du Dessinateur Industriel, André Chevalier, Éditions Hachette Technique.
- [6] Dassault Aviation, Falcon 2000 en vol 14_Falcon_May2008.jpg, http://photos.dassault-aviation.com.